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Turbulence measurements for rough-wall boundary layers are presented and compared
to those for a smooth wall. The rough-wall experiments were made on a woven mesh
surface at Reynolds numbers approximately equal to those for the smooth wall. Fully
rough conditions were achieved. The present work focuses on turbulence structure, as
documented through spectra of the fluctuating velocity components, swirl strength,
and two-point auto- and cross-correlations of the fluctuating velocity and swirl. The
present results are in good agreement, both qualitatively and quantitatively, with the
turbulence structure for smooth-wall boundary layers documented in the literature.
The boundary layer is characterized by packets of hairpin vortices which induce low-
speed regions with regular spanwise spacing. The same types of structure are observed
for the rough- and smooth-wall flows. When the measured quantities are normalized
using outer variables, some differences are observed, but quantitative similarity, in
large part, holds. The present results support and help to explain the previously
documented outer-region similarity in turbulence statistics between smooth- and
rough-wall boundary layers.

1. Introduction
The importance of surface roughness is well known for boundary-layer flows.

Roughness promotes transition to turbulence in laminar boundary layers. Pressure
forces on the roughness elements increase drag when the boundary layer is turbulent.
The flow over the top of the roughness elements may experience lower shear than the
flow over a solid smooth surface. The pressure forces typically dominate, resulting
in increased drag over rough surfaces, but the reduced shear can lower overall drag
in some cases (e.g. riblets). In either case, roughness clearly alters the near-wall flow
structure. The near-wall streaks documented by Kline et al. (1967) in smooth-wall
boundary layers, for example, typically have a spacing of about 100 wall units and
extend from the wall about the same distance. Roughness elements of this size or
larger will undoubtedly disrupt the streaks. The effect of roughness on the outer part
of the boundary layer is less obvious. To the extent that roughness-induced turbulent
events extend far from the wall, the turbulent structure of the entire boundary layer
may be affected. In contrast, if the events induced by the roughness are localized
near the wall, the roughness may change the boundary condition for the outer flow
but leave its structure qualitatively unchanged. In the latter case, the outer flow
structure would be similar for smooth- and rough-wall cases, with the roughness
effect appearing through the wall shear, on which the outer flow would scale.
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Prediction of roughness effects is of clear practical importance for a wide range of
industrial and geophysical flows. Examples range from flow through pipes and over
vehicles to atmospheric boundary layers. In principle, rough-wall boundary layers can
be predicted through direct numerical simulation of the Navier–Stokes equations if
the roughness is accurately incorporated in the boundary conditions. This approach
is not practical in most applications, however, so turbulence modelling is required.
Turbulence modelling requires prediction of the Reynolds stresses, which in turn
must depend on the turbulent eddy structure. Much is already known about the
structure of smooth-wall boundary layers, although more remains to be done to link
this knowledge to prediction of the Reynolds stresses. To the extent that rough-
and smooth-wall boundary layers are similar, the understanding of smooth-wall flows
may facilitate prediction of rough-wall boundary layers. The study of the outer region
structure in rough-wall cases may help elucidate the relationship between the inner
and outer regions of the boundary layer, improving predictions in both rough- and
smooth-wall cases.

Much is known concerning the structure of smooth-wall boundary layers.
Theodorson (1952) and Townsend (1976) proposed a boundary layer consisting
of hairpin vortices rising from the wall. Head & Bandyopadhyay (1981) reported
direct observations of hairpins and proposed that hairpins occur in groups with
characteristic inclination angles. Antonia, Bisset & Browne (1990) discussed large
‘δ-scale’ u-discontinuities in the outer layer. Na, Hanratty & Liu (2001) described
‘superbursts’ of fluid ejected from the near-wall region. Adrian, Meinhart & Tomkins
(2000b) presented experimental evidence and an extended discussion of hairpin
packets. The packets consist of multiple layers of nested hairpin vortices. Perry &
Chong (1982) further developed Townsend’s (1976) model, proposing ‘attached eddies’
extending from the wall. Perry & Marušić (1995) extended the model to include both
attached and detached eddies. The detached eddies consist of hairpins that have
separated from the wall and are responsible for the outer flow structure. Recent
discussion of turbulence structure is provided by several others, including but not
limited to Adrian, Christensen & Liu (2000a), Christensen & Adrian (2001), Marušić
(2001), Tomkins & Adrian (2003), Hambleton, Hutchins & Marušić (2006) and
Ganapathisubramani, Longmire & Marušić (2006). Many others have presented
turbulence statistics, which result from the flow structure. The various views of the
turbulent boundary layer are largely compatible. Ganapathisubramani, Longmire &
Marušić (2003), for example, noted that superbursts can occur within hairpin packets.
Hutchins, Hambleton & Marušić (2005) observed that superbursts, hairpin packets
and the large-scale passive wakes of del Álamo & Jiménez (2003) all scale with the
boundary-layer thickness, δ.

Perry & Marušić’s (1995) description of detached eddies suggests a decoupling of
the outer region of the boundary layer from the near wall. Experimental evidence
suggests the division between the inner and outer regions occurs at roughly y/δ =0.15,
where y is the distance from the wall. The detached eddies are not directly tied to
the wall, so their size should depend on an outer-region scale, i.e. the boundary-layer
thickness. The near-wall flow still sets the boundary condition for the outer flow, so
the outer region should depend on the wall shear and scale with the friction velocity,
uτ . The wall shear, in turn, depends on the velocity gradient, which is influenced by
the outer flow. Hence the decoupling of the inner and outer regions is only partial.
Near-wall turbulent events may not directly affect the outer-flow structure, but there
is a scaling link through uτ . The importance of large-scale events in the outer region
is significant. Adrian et al. (2000b) noted the effect of both inner and outer scales on
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the spacing of bursts and streaks in the inner region and the height of hairpins in the
outer region. Ganapathisubramani et al. (2003) noted that hairpin packets contribute
a large fraction of the total stress in the boundary layer. Tomkins & Adrian (2003)
indicate that both large- and small-scale motions contribute to stresses in the near-
wall region. Guala, Hommema & Adrian (2006) found that large and very large flow
structures contribute about 80 % of the Reynolds stress in all parts of the boundary
layer.

With a few exceptions, most rough-wall studies have inferred turbulence structure
through statistics such as the time-averaged Reynolds stresses and higher-order
moments. The prospect of structural similarity between rough- and smooth-wall
boundary layers is promising, based on numerous experiments that have shown
similarity of mean flow and turbulence quantities. The wall similarity hypothesis,
which is an extension of Townsend’s (1976) concept of Reynolds-number similarity
for turbulent flows, states that at high Reynolds number, turbulent motions are
independent of wall roughness and viscosity outside the roughness sublayer. The
roughness sublayer is defined as the region directly above the roughness where the
turbulent motions are directly influenced by the roughness length scales. Similarity
outside the roughness sublayer is consistent with Perry & Marušić’s (1995) model
of detached eddies. An extensive literature review of rough-wall boundary layers by
Raupach, Antonia & Rajagopalan (1991) concluded that there is strong experimental
evidence of outer-layer similarity in the turbulence structure over smooth and rough
walls. However, the experimental studies of rough-wall boundary layers by Krogstad,
Antonia & Browne (1992), Tachie, Bergstrom & Balachandar (2000) and Keirsbulck
et al. (2002) have all observed significant changes to the Reynolds stresses that extend
well into the outer layer for flows over woven mesh and transverse bar roughness.
Additionally, the numerical simulations of turbulent channel flow by Leonardi et al.
(2003) and Bhaganagar, Kim & Coleman (2004) show roughness effects in the outer
layer. This is in contrast to experimental studies by Flack, Schultz & Shapiro (2005),
Kunkel & Marušić (2006), Shockling, Allen & Smits (2006), and Schultz & Flack
(2007) which provide support for similarity in smooth- and rough-wall boundary layers
in terms of both the mean flow and the Reynolds stresses. Jiménez (2004) states that
the conflicting views regarding the validity of the wall similarity hypothesis may be
due to the effect of the relative roughness, k/δ, on the flow. He found that the studies
that have shown outer-layer effects have been for cases where the roughness height
is large compared to the boundary-layer thickness (k/δ � 1/50). Flack, Schultz &
Connelly (2007), however, showed outer-layer similarity even with k/δ � 1/20 for
sandgrain and mesh surfaces.

More direct information obtained through simultaneous measurements at multiple
locations or time-resolved measurements may help to clarify the extent of similarity
in rough-wall boundary layers. Grass (1971) observed ejections from the near-wall
region that extended into the outer layer. These were said to dominate the momentum
transport and provide a structural connection between the inner and outer layers. They
were a common feature of all boundary layers, however, irrespective of roughness. In
the smooth-wall case, the viscous sublayer was the source of the ejected fluid. In the
rough-wall case, the ejections originated in the spaces between roughness elements.
Turbulence intensity data depended only on the distance from the wall and the
boundary shear, and was independent of roughness. Nakagawa & Hanratty (2001)
considered flow over a wavy wall and present two-point correlations of the streamwise
and wall normal velocity fluctuations. They found good quantitative agreement with
similar flows over smooth walls. Jiménez (2004) reported similarity between turbulence
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spectra acquired in rough- and smooth-wall boundary layers outside of y/δ =0.15.
Krogstad & Antonia (1994) in contrast, documented the flow over a k-type rough
wall and noted significant differences from a smooth wall. The present study considers
the structure of smooth- and rough-wall boundary layers though documentation of
spectra, swirl strength and two-point correlations.

2. Experiments and data processing
Experiments were conducted in a water tunnel designed for detailed boundary-

layer measurements. The test section was 2 m long, 0.2 m wide and nominally 0.1 m
high. The lower wall was a flat plate which served as the test wall. The upper wall
was adjustable and set for a zero streamwise pressure gradient with the free-stream
velocity set to 1.25 m s−1 for all cases. The acceleration parameter, defined as

K =
ν

U 2
e

dUe

dx
, (2.1)

was less than 5 × 10−9. The upper wall and sidewalls provided optical access. An
acrylic test plate was used for the smooth-wall cases. A woven wire mesh was affixed
to a similar plate for the rough-wall cases. The mesh spacing was t = 1.69 mm,
and the mesh wire diameter was 0.26 mm, resulting in a peak to trough roughness
height of k = 0.52mm. Both the smooth and rough plates were painted black to
facilitate optical measurements. The smooth plate was sanded after painting to
ensure hydrodynamically smooth conditions. The boundary layer was tripped near
the leading edge with a 0.8 mm diameter wire, ensuring a turbulent boundary layer.
Velocity measurements showed that a core flow remained to the downstream end of
the test section.

Flow was supplied to the test section from a 1900 l cylindrical tank. Water was
drawn from the tank to two variable-speed pumps operating in parallel and then sent
to a flow-conditioning section consisting of a diffuser containing perforated plates,
a honeycomb, three screens and a three-dimensional contraction. The test section
followed the contraction. The free-stream turbulence level was less than 0.5 %. Water
exited the test section through a perforated plate emptying into the cylindrical tank.
The test fluid was deionized, filtered and deaerated water. A chiller was used to keep
the water temperature constant to within 1 K during all tests.

Boundary-layer velocity measurements were obtained with a TSI FSA3500 two-
component laser-Doppler velocimeter (LDV). The LDV consists of a four-beam fibre
optic probe that collects data in backscatter mode. A custom-designed beam displacer
was added to the probe to shift one of the four beams, resulting in three co-planar
beams that can be aligned parallel to the wall. Additionally, a 2.6:1 beam expander
was located at the exit of the probe to reduce the size of the measurement volume.
The resulting probe volume diameter (d) was 45 µm with a probe volume length (l)
of 340 µm. The corresponding measurement volume diameter and length in viscous
length scales were d+ = 2.3 and l+ = 17.1 for the smooth-wall case and d+ = 3.1 and
l+ = 24.5 for the rough-wall case.

Velocity profiles were acquired at several streamwise stations to determine the
boundary-layer thickness. A smooth-wall and a rough-wall station with similar
momentum-thickness Reynolds numbers were then selected for further analysis. At
each station, the probe was traversed to approximately 40 locations within the
boundary layer with a Velmex three-axis traverse unit. The traverse allowed the
position of the probe to be maintained to ±5 µm in all directions. The wall normal
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velocity component was not obtained for the 8–10 data points closest to the wall
owing to very low data rates and wall reflections. A total of 40 000 random velocity
samples were obtained at each location in the boundary layer. The data were collected
in coincidence mode. The flow was seeded with 3 µm diameter alumina particles. The
seed volume was controlled to achieve acceptable data rates while maintaining a low
burst density signal (Adrian 1983).

The LDV was also used to acquire long-time records (500 000 readings) at y/δ = 0.1
and 0.4. The flow was seeded with 1 µm diameter alumina particles. While larger
particles were acceptable for the other LDV measurements, smaller particles aided in
providing sufficient seed particles for the high data rate needed for spectral processing,
while maintaining low enough seed volume for an acceptably low burst density. For
turbulent spectra, it is important that the measurement volume be small enough
so that subsequent particles can be attributable to the same eddy structure. As the
results below will show, the correlation coefficients between points spaced l = 340 µm
in the spanwise direction are typically above 0.95, indicating that the probe volume
is sufficiently small to resolve most turbulent structures. The LDV was operated in
coincidence mode, and the nominal sampling rate was about 2200 Hz. Data were
acquired as particles passed through the measurement volume, so the samples were
not evenly spaced in time. Interpolation, using the method of Wei & Willmarth (1989)
was used to produce a time trace with evenly spaced points for spectral analysis. To
use this method accurately, the nominal sampling rate must be fast enough to provide
an essentially continuous signal. This requires very low turbulence energy above the
Nyquist frequency. Spectra of the data show that the highest frequency of significant
energy containing fluctuations in the flow was less than half the nominal sampling
rate.

Flow-field measurements were acquired using particle image velocimetry (PIV).
Streamwise–wall normal (x, y) planes were acquired at the spanwise centreline of the
test section. Streamwise–spanwise (x, z) planes were acquired at y/δ = 0.1 and 0.4.
The flow was seeded with 3 µm diameter alumina particles. The light source was a
Nd:YAG laser set for a 300 µs interval between pulses for each image pair. The field
of view in the (x, y)-plane was 72 mm × 53 mm, extending from near the wall into
the free stream. In the (x, z)-plane the field of view was 71 mm × 53 mm, centred
about the midspan of the test section. A CCD camera with a 1376 × 1024 pixel array
was used. TSI Insight 6.0 software was used for image processing. Velocity vectors
were obtained using 16 or 32 pixel square windows with 50 % overlap. For each
measurement plane, 2000 image pairs were acquired for processing.

The data-processing techniques used to compute the mean velocity, turbulence
statistics and wall shear are described in detail in Schultz & Flack (2007). The
techniques used to compute spectra, spatial correlations and swirl strength are
described below.

Spectra and cospectra of the streamwise (u) and wall normal (v) components of the
turbulence were computed using 4096 point fast Fourier transforms with 50 % overlap
and Hamming windowing. The frequency spectra are converted to wavenumber
spectra using Taylor’s hypothesis of frozen turbulence. The mean velocity at the
measurement location, as opposed to the instantaneous velocity of each data point
is used in the conversion. The same technique was used by Guala et al. (2006). The
frozen turbulence approximation gives a conservative estimate of the wavenumber
spectra compared to two-point measurements because large-scale eddies may decay
as they convect past the measurement volume. This approximation could potentially
affect either the smooth- or rough-wall case more if the decay were stronger in one



268 R. J. Volino, M. P. Schultz and K. A. Flack

case than the other, but as will be shown below, the rough- and smooth-wall spectra
were similar.

Two-point spatial correlations were done for each measurement plane. In the
(x, y)-plane the correlation is defined at the wall normal position yref as

RAB(yref) =
A(x, yref)B(x + �x, yref + �y)

σA(yref)σB(yref + �y)
, (2.2)

where A and B are the quantities of interest at two locations separated in the
streamwise and wall normal directions by �x and �y, and σA and σB are the standard
deviations of A and B at yref and yref + �y, respectively. At every yref, the overbar
indicates the correlations were averaged among locations pairs with the same �x and
�y, and then time averaged over the 2000 vector fields. Correlations of u, v, the swirl
strength, and all cross-correlations were considered.

For the (x, z)-planes, the correlation is defined as

RAB =
A(x, z)B(x + �x, z + �z)

σAσB

, (2.3)

where A and B are the quantities of interest at two locations separated in the
streamwise and spanwise directions by �x and �z, and σA and σB are the standard
deviations of A and B based on data in the full plane for the 2000 vector fields.
The correlations were averaged among all locations with the same �x and �z, and
then time averaged. The same averaging techniques were used by Tomkins & Adrian
(2003) and Ganapathisubramani et al. (2005).

The swirl strength, λ, can be used to locate vortices. It is closely related to the
vorticity, but discriminates between vorticity due only to shear and vorticity resulting
from rotation. It is defined as the imaginary part of the complex eigenvalue of the
local velocity gradient tensor, and is defined as follows (Zhou et al. 1999):

[dij] = [vr vcr vci]

⎡
⎣
λr

λcr λci

−λci λcr

⎤
⎦ [vr vcr vci]

−1, (2.4)

where [dij] is the velocity gradient tensor. It is used in the present study in a two-
dimensional form as explained in several studies including Hutchins et al. (2005).
A more complete discussion is available in Chong, Perry & Cantwell (1990). By
definition, λ is always � 0, but a sign can be assigned based on the local vorticity
to show the direction of rotation. Swirl strength, λ, will be assumed signed unless
denoted λm, which will indicate the unsigned magnitude. In the (x, y)-plane, λ can be
used to identify the heads of hairpin vortices, and in the (x, z)-plane, λ can identify
the legs of these vortices.

3. Results
Comparisons are made between the flow at the smooth-wall location with the

highest Reynolds number and the rough-wall location with the closest Reynolds
number to the smooth-wall case, with the focus being on turbulence structure. The
boundary-layer thickness, friction velocity and other quantities from the velocity
profiles at these locations are presented in table 1. For the rough-wall case, the
roughness Reynolds number, k+

s = ksuτ /ν (ks is the equivalent sandgrain roughness),
is 112, indicating fully rough conditions. The roughness Reynolds number is given by
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Wall x (m) Ue (m s−1) δ (mm) uτ (m s−1) Reθ = Ueθ/ν Reτ = uτ δ/ν k+
s = ksuτ /ν k/δ

Smooth 1.50 1.255 35.2 0.0465 6069 1772
Rough 1.08 1.247 36.8 0.0603 7663 2438 112 0.014

Table 1. Boundary-layer parameters.
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Figure 1. Premultiplied turbulence spectra of uu, vv, and –uv at (a) y/δ = 0.1 and
(b) y/δ = 0.4. ——, smooth; – – –, rough.

the following (Schultz & Flack 2007)

�U+ =
1

κ
ln k+

s − 3.5, (3.1)

where �U+ is the roughness function. The friction velocity, uτ , was determined using
the Clauser chart method with κ = 0.41 and B = 5.0. The uncertainty in uτ was ±3 %
and ±6 % for the smooth- and rough-wall cases, respectively. The total stress method
was also used to evaluate uτ , and the resulting values agreed with those from the
Clauser chart method to within 5 %. Details of both methods are given in Flack et al.
(2005). The uncertainties in the boundary-layer thickness (based here on U/Ue = 0.99)
and momentum thickness were 7% and 4 %, respectively.

3.1. Spectra

Premultiplied spectra of uu, vv and −uv are shown in figure 1, normalized using
outer variables. At y/δ = 0.1 (figure 5a), there is a difference between the rough- and
smooth-wall uu spectra at low wavenumbers. At higher wavenumbers for uu and for
all wavenumbers in vv and uv, the smooth- and rough-wall spectra are similar. The
overall difference in uu between the two cases is about 20 %, which is large enough
to indicate a possible difference between the cases, but still within the combined
uncertainty of the measurements. At y/δ =0.4, the rough and smooth cases agree
to within 3 %. The rough-wall boundary layer contains significantly more turbulent
energy than the smooth, but when scaled with uτ , the similarity between the rough
and smooth cases is clear in the outer flow. The present results contrast with those of
Krogstad et al. (1992). Their results showed significant increases in the vv spectrum
over the entire wavenumber range for a rough wall.
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Figure 2. Typical instantaneous velocity field in the (x, y)-plane with positive (prograde) swirl
(red shading) and negative (retrograde) swirl (blue shading) superimposed, (a) smooth wall,
(b) rough wall.

3.2. Velocity fields, (x, y)-plane

Typical instantaneous velocity vector fields in the streamwise–wall normal plane are
shown in figure 2. A Galilean decomposition has been applied. That is, a uniform
convection velocity (0.72Ue in the smooth-wall case and 0.64Ue in the rough-wall
case) has been subtracted from each field. The hairpin vortices in a packet become
visible if their common convection velocity is subtracted from the instantaneous field.
The fields shown in figure 2 were deliberately chosen to include hairpin packets.
Qualitatively, the smooth- and rough-wall velocity fields look very similar. Lines of
vortices, inclined at about 10◦ to 15◦ to the wall, are visible in both cases. These
vortices are the heads of hairpins moving together as a packet. Vortices rotating
in the direction exhibited by the hairpin heads (clockwise in figure 2) were termed
prograde by Wu & Christensen (2006). They referred to vortices rotating in the
opposite direction as retrograde. Superimposed on the vectors in figure 2 are contours
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Figure 3. Swirl strength in the (x, y)-plane, (a) fraction of time with positive, negative and
non-zero swirl strength, (b) average dimensionless swirl strength during positive, negative and
non-zero swirl events, (c) product of fraction of time with positive, negative and non-zero swirl
strength and corresponding average swirl within fraction.

of signed swirl strength. The regions of non-zero swirl strength are almost always
associated with hairpin packets. This is most evident in figure 2(b), in which the end
of a mature hairpin packet is seen on the left (x/δ < 0.6) with another hairpin packet
extending nearly the entire width of the image (0 < x/δ < 1.9). The hairpin heads
visible in the velocity vectors correspond to regions of positive (prograde) λ. These
are dominant features of the flow since they are generated by the mean shear. Other
regions of positive swirl are also visible, and most of these are attributable to other
hairpin packets moving at different convection velocities. These packets become clear
when different convection speeds are subtracted from the velocity field. The present
results for both rough and smooth walls are in qualitative agreement with the findings
of Adrian et al. (2000b), which showed these packets to be a significant feature of the
smooth-wall boundary layer. Below, more quantitative comparisons between the two
cases will be made.

The swirl strength is quantified in figure 3. The fraction of measurement locations
with positive (prograde) and negative (retrograde) λ are shown as a function of y/δ

in figure 3(a). Also shown is the sum of the positive and negative fractions, i.e. the
fraction of locations with non-zero swirl. The data in figure 3 are based on all 2000
vector fields for each of the smooth- and rough-wall cases. The agreement between the
smooth- and rough-wall cases is very good. At all locations, the swirl strength at any
instant is non-zero about 30 % of the time. Near the wall, most of this non-zero swirl
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has a positive sense of rotation. This is expected, as the heads of hairpin vortices have
positive vorticity. Wu & Christensen (2006) reported the same observation for smooth
walls. With increasing distance from the wall, the fraction of positive swirl decreases
and the fraction of negative swirl rises at about the same rate. The rate of change of
these quantities is rapid from the wall to y/δ ≈ 0.15, and then becomes more gradual
at y/δ between 0.15 and 0.55. These two regions correspond to the regions it has been
proposed are associated with attached and detached eddies. Beyond y/δ = 0.55, the
rate of change of the fractions increases, and by the edge of the boundary layer, the
positive and negative fractions are equal. The locations near the boundary-layer edge
are above most hairpin packets, so the turbulent motions will be less organized and
vortices with positive and negative rotation should be equally likely.

The mean of the dimensionless swirl strength, λδ/uτ , corresponding to the positive,
negative and non-zero fractions of figure 3(a) is shown in figure 3(b). For y/δ < 0.1,
the swirl has noticeably larger magnitude on the rough wall, but for the outer flow
the rough- and smooth-wall results are similar. Figure 3(c) shows the product of the
fractions and mean values of figures 3(a) and 3(b). The positive swirl contribution is
much larger than the negative, and the rough- and smooth-wall results agree well in
the outer flow.

The probability density function of λ is presented in figure 4 as a function of y/δ.
The value of λ is zero at locations where vortices are not present, which constitutes
about 70 % of the flow at any location, as shown in figure 3(a). The spikes at zero have
been removed from the p.d.f.s of figure 4 for clarity. Near the wall, at y/δ = 0.1 and
0.2, some differences between the rough- and smooth-wall cases are visible. Farther
from the wall, at y/δ between 0.4 and 0.6 the smooth- and rough-wall results are
nearly indistinguishable, providing more quantitative confirmation of the qualitative
agreement observed in figure 2. Near the wall, the positive p.d.f. peak is larger than
the negative peak, in agreement with the fractions of figure 3(a), since much of the
swirl is associated with hairpin heads that have a positive sense of rotation owing to
the mean shear. Above y/δ = 0.6, the positive and negative peaks have more equal
magnitudes. The y/δ > 0.6 locations are above most of the hairpin packets, so the
turbulence is more disorganized with eddies of either sense of rotation.

The shape of both the positive and negative sides of the p.d.f.s in figure 4 are
closely approximated by the gamma function probability density function,

γ =
1

baΓ (a)
xa−1 exp(−x/b) (3.2)

where a and b are shape and scale parameters. This is demonstrated in figure 5, where
the p.d.f. at y/δ = 0.4 is shown along with gamma function fits to the smooth-wall
data.

The average extent and shape of the hairpin packets can be quantified through two-
point correlations of the fluctuating velocity. Figures 6(a) and 6(b) show contours
of the two-point correlations of the streamwise fluctuating velocity, Ruu, with the
correlation centred at yref/δ = 0.4. The rough- and smooth-wall results appear similar.
Figure 6(c) shows streamwise slices through the correlations of figures 6(a) and 6(b),
passing through the self-correlation peaks. The agreement between the smooth and
rough cases is good. Figure 6(d) shows wall normal slices passing through the self-
correlation peaks. The normalizing quantities in Ruu become small near the boundary-
layer edge owing to the low free-stream turbulence, resulting in higher uncertainty
and more case to case variation. For this reason, only data for y/δ < 0.6 are presented.
The rough- and smooth-wall results agree to within 0.06 in Ruu from y/δ =0.15 to
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Figure 6. Contours of Ruu centred at y/δ = 0.4, outermost contour Ruu = 0.5, contour spacing
0.1, (a) smooth wall, (b) rough wall, (c) streamwise slices through self-correlation points,
(d) wall normal slices through self-correlation points.

0.6. Nearer to the wall, larger differences are observed. Adrian et al. (2000b) noted the
relation between vortices in hairpin packets, including the interaction between larger,
more mature hairpins in the outer flow and smaller vortices associated with the low-
speed streaks very near the wall. Although no final conclusion can be drawn because
of experimental uncertainty in the near-wall region, the higher Ruu at y/δ < 0.15 for
the smooth-wall case in figure 6(d) may be indicative of this interaction, whereas the
lower value for the rough-wall case may result from the destruction of the near-wall
streaks by the roughness. Since the outer flow is similar for the rough- and smooth-
wall cases, whereas the near-wall flow is different, it seems that the near-wall flow
may depend on the outer-flow behaviour, but the outer flow may be independent of
the near-wall condition. This would support the wall similarity hypothesis and the
detached eddy model for the outer flow.

The angle of inclination of Ruu is related to the average inclination of the hairpin
packets. Christensen & Wu (2005) determined the angle through a least-squares
method by fitting a line through points on the Ruu contours. In the present study,
a least-squares fit was made to the points farthest away from the self-correlation
peak at each of the five contour levels 0.5, 0.6, 0.7, 0.8 and 0.9 both upstream and
downstream of the self-correlation peak. For the present cases, the inclination angle
remains nearly constant for reference points between y/δ = 0.2 and 0.7. For y/δ < 0.2
there is some scatter in the data as the contours began to merge with the wall.
For y/δ > 0.7, the angle decreases toward zero, as these points tend to be above the
hairpin packets which produce the inclination. For 0.2 <y/δ < 0.7, the angles are
13.2◦ ± 2.5◦ and 15.8◦ ± 3.3◦ on the smooth and rough walls, respectively. The range
in each case indicates the span about the average observed between y/δ =0.2 and
0.7. The difference between the rough and smooth cases is comparable to the scatter
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Figure 7. Extent of Ruu = 0.5 contour as function of y/δ, (a) streamwise extent, (b) wall
normal extent.

in the data and the range reported in the literature for smooth-wall boundary layers.
Christensen & Wu (2005) found an angle of 11◦ for their smooth-wall channel flow.
Head & Bandyopadhyay (1981) observed inclination angles between 15◦ and 20◦.
Christensen & Adrian (2001) reported 12◦ to 13◦. Adrian et al. (2000b) found a 12◦

angle. Tomkins & Adrian (2003) found angles between 10◦ and 20◦. Nakagawa &
Hanratty (2001) considered a rough (wavy) wall in a channel flow. They found an angle
of 9◦, which compared to smooth-wall values of 6◦ to 8◦. Krogstad & Antonia (1994),
in contrast, saw large differences with roughness. They used mesh roughness, similar
to the present study, with δ/k = 109, δ/ks = 15, k+

s = 331, and δ/t =24 at Reθ = 12 800.
As in the present study, t is the mesh spacing. The Reθ value is approximately twice
that in the present study. Krogstad & Antonia (1994) produced spatial correlations
using data acquired with a rake of cross-wire probes at a single streamwise location.
Taylor’s hypothesis was used to extrapolate in the streamwise direction. Krogstad &
Antonia (1994) found an increase in the inclination angle from 10◦ on a smooth wall
to 38◦ on their rough wall.

The streamwise and wall normal extent of Ruu are shown in figure 7. The distance,
Lxuu, is defined as in Christensen & Wu (2005) as twice the distance from the
self-correlation peak to the most downstream location on the Ruu = 0.5 contour.
The rough- and smooth-wall results agree well with a value of about Lxuu/δ = 0.65
between y/δ = 0.1 and 0.6. Closer to the wall, some differences are visible. If the
Ruu = 0.6 contour is used to determine Lxuu, the results appear qualitatively similar to
those in figure 7(a), but Lxuu/δ decreases to 0.43 between y/δ = 0.1 and 0.6. This value
agrees well with the smooth-wall result of Krogstad & Antonia (1994). In contrast
to the present rough- and smooth-wall agreement, Krogstad & Antonia (1994) found
Lxuu/δ was about 50 % lower on their rough wall. The wall normal extent of the Ruu

correlation, Lyuu, is determined based on the wall normal distance between the points
closest and farthest from the wall on a particular contour. Figure 7(b) shows Lyuu/δ

as a function of y/δ using the Ruu = 0.5 contour. Owing to the contours merging
with the wall, reliable estimates of Lyuu could not be obtained for y/δ < 0.2. As with
Lxuu, the rough- and smooth-wall results agree well out to y/δ = 0.6. Comparing
figures 7(a) and 7(b), the ratio of Lxuu/Lyuu is roughly 2.5 for both the rough and
smooth walls. This is near the range of values reported by Nakagawa & Hanratty
(2001) and also agrees with the smooth-wall results of Krogstad & Antonia (1994).
In contrast, Krogstad & Antonia (1994) found that the ratio was about 1 on their
rough wall.
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Figure 8. Streamwise slices of Ruu through the self-correlation point centred at y/δ = 0.4
computed from PIV and LDV data.

The results for the Ruu correlation obtained using PIV were compared with the
results obtained using LDV at y/δ = 0.4. Determining the Ruu correlation based on
LDV requires the use of Taylor’s hypothesis. The comparison is shown in figure 8. For
the rough-wall case, the PIV and LDV results agree to within 10 % for �x/δ < 0.4. For
the smooth-wall case, the PIV and LDV results agree to within 10 % for �x/δ < 0.8.

Figure 9 shows Rvv contours centred at y/δ = 0.4 along with streamwise and wall
normal slices through the self-correlation peaks. Figure 10 shows Lx vv and Lyvv as
functions of y/δ. The length Lx vv is determined based on the streamwise distance
between the most upstream and downstream points on the Rvv = 0.5 contour. The
length Lyvv is defined as above for the Ruu results. The streamwise extent of Rvv is
considerably less than that of Ruu, since Ruu is tied to the common convection velocity
of each hairpin packet. The ratio Lx vv/Lyvv is about 0.8 for both the smooth and
rough walls, which is similar to the results of Nakagawa & Hanratty (2001). The
extent of the rough-wall Rvv is about 20 % lower than the smooth-wall extent for
y/δ > 0.2 in both the streamwise and wall normal directions. The present smooth-wall
results are similar to those of Krogstad & Antonia (1994). Krogstad & Antonia (1994)
show little difference in Lyvv between their rough- and smooth-wall cases, but Lx vv

dropped by a factor of 2 from the smooth wall to the rough.
Contours of the cross-correlation Ruv centred at y/δ = 0.4 are shown in figure 11

along with streamwise and wall normal slices through the self-correlation locations.
Some differences are present for the lower-magnitude contours, particularly far from
the wall, where the rough-wall values are significantly higher. As discussed above,
this may be due to free-stream effects and uncertainty in Ruv near the boundary-layer
edge owing to low turbulence levels. The differences in the higher magnitude contours
are consistent with those of Rvv in figure 9.

Contours of the auto-correlation of the signed swirl strength, Rλλ, at y/δ =0.4 are
shown in figure 12 along with streamwise and wall normal slices through the self-
correlation point. The extent of the Rλλ =0.1 and 0.2 contours is about 20 % larger
for the smooth-wall case. The difference is lower for the higher-valued contours. The
streamwise and wall normal extent of the correlation, Lx λλ and Lyλλ, based on the
Rλλ = 0.5 contour are shown in figure 13. The extent of the rough-wall correlation is
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Figure 9. Contours of Rvv centred at y/δ = 0.4, outermost contour Rvv = 0.5, contour spacing
0.1, (a) smooth wall, (b) rough wall, (c) streamwise slices through self-correlation points,
(d) wall normal slices through self-correlation points.
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Figure 10. Extent of Rvv = 0.5 contour as a function of y/δ, (a) streamwise extent, (b) wall
normal extent.

about 15 % lower than the smooth-wall correlation in both directions, but the cases
otherwise appear similar.

Figure 14 shows contours of the cross-correlation of the signed swirl strength
and streamwise velocity, Rλu. Examples are shown with the correlation centred at
y/δ =0.15 and 0.4 for the rough- and smooth-wall cases. Figure 15 shows the Rλv

correlation for the same locations. Physically, Rλu and Rλv show the relation of a
vortex centre to the surrounding velocity field. For example, consider a prograde
(positive λ) swirling motion (e.g. the head of a hairpin vortex in the (x, y)-plane). In
a reference frame moving with the vortex, there will be positively signed streamwise
velocity above the vortex and negatively signed u below the vortex. The result will be
positive and negative λu above and below the vortex, respectively. Similarly, prograde
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Figure 14. Contours of Rλu centred at y/δ = 0.4, contour magnitudes Rλu = 0.01, 0.03, 0.07,
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y/δ = 0.15, (c) smooth wall, y/δ = 0.4, (d) rough wall, y/δ = 0.4.

rotation of the vortex means velocity toward the wall (negative v) downstream of
the vortex centre and velocity away from the wall (positive v) upstream of the
vortex. The resulting λv will be positive upstream and negative downstream of the
vortex. The correlation coefficients show the average spatial extent and strength of
the velocity field associated with a vortex centred at the self correlation point. If the
vortex is part of a hairpin packet, the relation between the vortices in the packet
and their associated velocity fields will extend the λu correlation along the length of
the packet, as seen in figure 14. For both Rλu and Rλv , the rough- and smooth-wall
results are similar, and this similarity holds at all wall normal locations. Straight-line
fits between the positive and negative contours of the Rλu fields in figure 14 have
slopes between 10◦ and 15◦. These inclination angles are consistent with the angles
extracted from the Ruu contours of figure 6. The present Rλu and Rλv results agree
with those of Christensen & Adrian (2001) from a smooth-wall channel flow.
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Fraction non-zero swirl λmδ/uτ Fraction non-zero swirl λmδ/uτ

Surface y/δ = 0.1 y/δ = 0.1 y/δ = 0.4 y/δ = 0.4

Smooth Wall 0.0927 1.530 0.0879 1.103
Rough Wall 0.0921 1.571 0.0884 1.163

Table 2. Swirl strength in the (x, z)-plane.

3.3. Velocity fields, (x, z)-plane

Typical instantaneous velocity vector fields in the streamwise-spanwise plane at
y/δ = 0.1 and 0.4 are shown in figure 16. A Galilean decomposition has been applied
at y/δ = 0.1 with 0.72Ue and 0.56Ue subtracted from the streamwise velocity in the
smooth- and rough-wall cases, respectively. At y/δ = 0.4, 0.8Ue had been subtracted
in both cases. The subtraction reveals high- and low-speed streaks. These streaks are
more than an order of magnitude wider than the near-wall streaks of Kline et al.
(1967). Contours of the signed swirl strength are superimposed on the vector fields.
Swirl of opposite sign is located along each side of the low-speed regions. Tomkins &
Adrian (2003) showed several examples of low-speed regions in the streamwise–
spanwise plane flanked by lines of oppositely signed swirl. They explained that the
low-speed streaks are induced by hairpin packets, and the vortices identified by the
swirl strength correspond to the legs of hairpin vortices. The rough- and smooth-wall
cases appear similar at both wall normal locations.

The fraction of the time the swirl strength is non-zero and the mean of the unsigned
dimensionless swirl, λmδ/uτ , are given for the smooth and rough walls at both wall
normal locations in table 2. The agreement between the smooth- and rough-wall
cases at both locations is clear. The agreement is further illustrated by the probability
density functions of λδ/uτ , shown in figure 17. The spikes at λδ/uτ =0 are not
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Figure 16(a, b). For caption see next page.

shown. As was shown for the swirl strength data in the (x, y)-plane (figure 5), the
distributions in figure 17 agree with the probability density function distributions of
gamma functions.
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Figure 16. Typical instantaneous velocity field in the (x, z)-plane with positive swirl (red
shading) and negative swirl (blue shading) superimposed, (a) smooth wall y/δ = 0.1, (b) rough
wall y/δ = 0.1, (c) smooth wall y/δ = 0.4, (d) rough wall y/δ = 0.4.
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Figure 17. Probability density function of dimensionless swirl strength in the (x, z)-plane
with Γ function p.d.f. fits to smooth-wall data.

Contours of the two-point correlation, Ruu , are shown in figure 18 for the rough-
and smooth-wall cases at y/δ = 0.1 and 0.4. Also shown are streamwise and spanwise
slices through the self-correlation points. The high peak centred at the self-correlation
point is similar for the rough- and smooth-wall cases. The extent of the high peak
in the streamwise and spanwise directions is slightly larger at y/δ = 0.4 than at
y/δ =0.1. The values of the streamwise length, Lxuu , at y/δ = 0.1 and 0.4 obtained
in the (x, z)-plane are in good agreement with the values obtained in the (x, y)-
plane. Secondary correlation peaks of both positive and negative value are present
as streamwise oriented streaks at various spanwise spacings from the self-correlation
point. These streaks indicate a regular spacing of high- and low-speed regions. The
correlation values are low compared to the central peak because there is variation
in the streak spacing at any instant, as suggested by the vector fields in figure 16.
From the contours of figure 18, the spacing between streaks of the same sign is
about 0.75δ for the smooth wall at both y/δ locations, and about 0.85δ for the rough
wall. The extent of the primary peak in the streamwise (Lxuu) and spanwise (Lzuu)
directions is slightly larger for the smooth wall than for the rough, particularly at
low values of Ruu, but the differences are typically less than 10 %. The present Lxuu

and Lzuu results are about 20 % higher, but generally comparable to the smooth-wall
results presented by Ganapathisubramani et al. (2005) and Hutchins et al. (2005). The
present differences between the rough- and smooth-wall cases are comparable to the
variation in these quantities among the smooth-wall cases of Hutchins et al. (2005).

Contours of Rww are shown in figure 19 along with streamwise and spanwise slices
through the self-correlation points. The rough- and smooth-wall results are similar.
The streamwise extent of the correlation is much lower for Rww than for Ruu. This is
not surprising since the streamwise velocity is associated with the convection speed
of the hairpin packets, whereas the spanwise velocity is not. Small differences are
visible between the two wall normal locations. At both locations, the smooth- and
rough-wall results are virtually identical. The present results are in good agreement
with the smooth-wall results of Hutchins et al. (2005).

The cross-correlation Ruw is shown in figure 20. Similarity is clear between the
smooth- and rough-wall results. The shape and signs of the contours are consistent
with flow induced by the legs of hairpin vortices to the sides of the low-speed regions.
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Figure 19. Contours of Rww in the (x, z)-plane, contour magnitudes Rww = 0.02, 0.06, 0.1,
0.3, 0.5, 0.7, 0.9, contour signs black, positive; grey, negative, (a) smooth wall y/δ = 0.1,
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slices through self-correlation points, (f ) spanwise slices through self-correlation points.
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Figure 20. Contours of Ruw in the (x, z)-plane, contour magnitudes Ruw = 0.02, 0.06, 0.1,
contour signs black, positive; grey, negative, (a) smooth wall y/δ = 0.1, (b) rough wall y/δ = 0.1,
(c) smooth wall y/δ = 0.4, (d) rough wall y/δ = 0.4.
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The vortices direct fluid downstream (with −u) toward the self-correlation point from
both spanwise sides (with oppositely signed w on either side). The fluid continues past
the self-correlation point (still −u) and moves away from the self-correlation point in
the spanwise direction (w changes sign on each side of the span). The contour shape
is noticeably different between the y/δ = 0.1 and 0.4 locations, and this difference is
the same for the smooth- and rough-wall cases. The contours at y/δ = 0.1 extend
mainly downstream of the self-correlation point, while those at y/δ = 0.4 extend
both upstream and downstream. The difference may be due to a higher inclination
angle of the vortices farther from the wall, as noted by Ganapathisubramani et al.
(2006).

Two-point correlations of the signed swirl strength, Rλλ, in the (x, z)-plane are
shown in figure 21 along with streamwise and spanwise slices through the self-
correlation points. The value of Rλλ drops off quickly from the self-correlation point.
The rough- and smooth-wall cases are in good agreement. The present results are in
good agreement with the smooth-wall results of Ganapathisubramani et al. (2006).
In their results, Ganapathisubramani et al. (2006) noted that at the higher levels of
Rλλ, the extent of the correlation was the same at y/δ = 0.09 and 0.53. For Rλλ < 0.1,
they saw that the streamwise extent of the correlation, Lx λλ, was larger than the
spanwise extent Lz λλ, and they attributed this to streamwise elongation of large
structures. They noted that the ratio Lx λλ/Lz λλ was higher near the wall, which they
attributed to eddies whose inclination angle increased with distance from the wall.
The eddies are presumably the legs of hairpin vortices. Although the differences in
Rλλ between y/δ =0.1 and 0.4 in the present results are subtle, they agree with the
results of Ganapathisubramani et al. (2006). The very low-magnitude contours in
figure 21 show streamwise streaks of correlated swirl. The sign of Rλλ in each streak
alternates across the span. The spacing of the streaks is consistent with the Ruu result
of figure 18. The agreement of Rλλ and Ruu is not coincidental. The low-speed regions
are the result of hairpin packets, and the legs of the hairpins are aligned along the
sides of the low-speed regions, as shown in figure 16. Tomkins & Adrian (2003) noted
that the degree of coherence of the structures is remarkable given the background
turbulence level, and it is also remarkable that the low-magnitude Rλλ contours can
be extracted from the turbulent flow field to show correlation across multiple regions
across the span.

The correlation between the signed swirl strength and the velocity field is shown in
the Rλu contours of figure 22 along with spanwise slices through the self-correlation
points. There is little variation between the rough- and smooth-wall cases. There is
strong correlation of opposite sign to each side of the self-correlation point, indicating
the relation of the hairpin legs to the low-speed regions. The maximum correlation is
somewhat higher closer to the wall than at y/δ = 0.4. The peak is somewhat wider in
the spanwise direction at y/δ =0.4, possibly indicating larger structures farther from
the wall. Streaks of lower Rλu indicate the regular spacing of the low-speed regions
across the span. The spacing is the same for the rough- and smooth-wall cases, as
indicated previously by the Ruu and Rλλ results.

Contours of Rλw are shown in figure 23 along with streamwise slices through the
self-correlation points. The high-magnitude peaks correspond to vortices inducing
spanwise motion at the self-correlation point. Lower magnitude contours indicate
a correlation across the span, as seen more clearly above in Ruu and Rλλ. The Rλw

contours are clearly different at y/δ =0.1 and 0.4, suggesting a difference in the
turbulence structure between the two locations. As in the Ruw contours of figure 20,
the correlation is stronger downstream of the self-correlation point at y/δ = 0.1, but
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Figure 21. Contours of Rλλ in the (x, z)-plane, contour magnitudes Rλλ = 0.001, 0.005, 0.01,
0.04, 0.08, contour signs black, positive; grey, negative, (a) smooth wall y/δ = 0.1, (b) rough
wall y/δ =0.1, (c) smooth wall y/δ = 0.4, (d) rough wall y/δ = 0.4, (e) streamwise slices through
self-correlation points, (f ) spanwise slices through self-correlation points.
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Figure 22. Contours of Rλu in the (x, z)-plane, contour magnitudes Rλu = 0.001, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, contour signs black, positive; grey, negative, (a) smooth wall y/δ = 0.1,
(b) rough wall y/δ = 0.1, (c) smooth wall y/δ = 0.4, (d) rough wall y/δ = 0.4, (e) spanwise slices
through self correlation points.
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Figure 23. Contours of Rλw in the (x, z)-plane, contour magnitudes Rλw = 0.001, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, contour signs black, positive; grey, negative, (a) smooth wall y/δ = 0.1,
(b) rough wall y/δ = 0.1, (c) smooth wall y/δ = 0.4, (d) rough wall y/δ = 0.4, (e) streamwise
slices through self-correlation points.
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stronger upstream at y/δ =0.4. At both locations, the similarity of the magnitude and
details of the contour patterns between the smooth- and rough-wall results is clear.

4. Conclusions
Experimental measurements have been presented from smooth- and rough-wall

boundary layers to document the turbulence structure under zero-pressure-gradient
conditions. On the smooth wall, the focus was on a streamwise location where the
momentum-thickness Reynolds number was high (6069). On the rough wall, the focus
was on a streamwise location where the momentum-thickness Reynolds number (7663)
was close to that of the smooth-wall case. Fully rough conditions were established
using k-type roughness produced with a wire mesh (k+

s =112). Measurements were
made in the streamwise–wall normal plane, and in two streamwise–spanwise planes
located at y/δ = 0.1 and 0.4. Turbulence structure was documented through spectra
of the streamwise and wall normal fluctuating velocity, the swirl strength in each
measurement plane, and two-point auto- and cross-correlations of the velocity
components and swirl strength.

The present results all show excellent qualitative agreement between the turbulence
structure in the outer region for rough- and smooth-wall boundary layers, supporting
Townsend’s (1976) Reynolds-number-similarity hypothesis. Hairpin packets are
observed to be a prominent feature of the rough-wall boundary layer, much the same
as its smooth-wall counterpart. Some quantitative differences were noted between
the smooth- and rough-wall results, mainly observed as differences in the correlation
lengths. The lengths based on Rvv , Ruv and Rλλ are about 10 to 20 % lower on
the rough wall. Other quantities showed closer agreement. The turbulence spectra,
normalized swirl strength, two-point correlations of various quantities, and average
angles of maximum correlation all show very good quantitative agreement. These
results indicate that the outer layer is largely independent of surface condition except
for the role that the wall conditions have on setting the length (δ) and velocity (uτ )
boundary conditions for the outer flow. The present results support the previously
reported similarity in outer-region turbulence statistics between smooth- and rough-
wall boundary layers.

The present results agree with the body of literature documenting turbulence
structure in smooth-wall boundary layers. The boundary layer includes large-scale
packets consisting of multiple hairpin vortices. The packets have a characteristic
inclination angle and size which scales on the boundary-layer thickness, and these
quantities are consistent between the rough- and smooth-wall cases.
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Hambleton, W. T., Hutchins, N. & Marušić, I. 2006 Simultaneous orthogonal-plane particle image
velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 53–64.

Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure.
J. Fluid Mech. 107, 297–337.
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